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J. Phys. -4: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Suppression and enhancement of a ‘drift-type’ instability 
in a magnetoplasma by a feedback technique 

B. E. KEEN and R. V. ALDRIDGEt 
UKAEA Research Group, Culham Laboratory, Abingdon, Berks., England 
MS. seceiced 1 s t  July 1970 

Abstract. This paper presents the experimental details and the results obtained 
when a feedback system is used to suppress or enhance drift instabilities 
present in a magnetoplasma. A nonlinear phenomenological theory is developed 
which predicts how the amplitude and frequency of the instability should change 
as a function of gain and phase shift in the feedback loop. Comparison of the 
results with this theory show good agreement. Further, the effect on the 
density and temperature profiles when the instability is suppressed has been 
investigated, and from these results a quantitative change in the cross-field 
diffusion constant has been inferred. Also, experiments are reported which 
show the effects of feeding back distinct azimuthal mode numbers m = 0, i 1, 
and i 2, as well as the results obtained using more than one separate system. 

1. Introduction 
In  recent years, one of the problems in fusion research has been the possible 

correlation between the presence of finite amplitude micro-instabilities in a plasma, 
and the anomalously high diffusion of plasma across a containing magnetic field. 
In  some degree, this has been substantiated by the experiments of Chu e t  a2. (1967) 
and Hendel et al. (1968) who measured the density profile with and without a col- 
lisional drift instability present in their ‘Q’ machine plasma. From these results they 
calculated a change in the cross-field diffusion coefficient. hlost containment devices 
in fusion physics are designed so that the effect of such instabilities on the cross-field 
diffusion is minimized. The usual method of achieving this is by using complex 
magnetic field geometries. However, another technique has been proposed by 
Artsimovich and Karteshev (1962) and Arsenin e t  al. (1969), in which a feedback 
method is used to stabilize the instability in the plasma. This method has been 
demonstrated (Arsenin e t  al. 1969) successfully on the flute instability, and has also 
been predicted (Arsenin and Chuyanov 1968) for the drift instability. This paper 
reports results obtained by a similar technique on a ‘drift-like’ instability. Preliminary 
reports of this work have been published by Keen and Aldridge (1969), and recent 
work on the same subject has been reported by Parker and Thomassen (1969) and 
by Simonen et al. (1969). 

Any feedback method essentially relies on firstly being able to detect, unambig- 
uously, the instability and then using this information to couple a signal back into the 
plasma. This feedback signal must be of the correct amplitude and phase such that a 
constraint is applied to the plasma, in order to damp out the instability. The experi- 
ments performed using this technique were of two types : 

(i) Those which established the usefulness and the loop characteristics of the 
technique when suppressing a drift instability. 

t Present address : Department of Mathematical and Physical Sciences, University of East 
Anglia, Norwich, England. 
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(ii) Those which studied the effect on the steady state plasma density and tempera- 
ture, when suppressing or enhancing the instability. 

In  $ 2 ,  the recent linearized theories of feedback stabilization are briefly considered 
and a phenomenological nonlinear theory is developed. 5 3 describes the apparatus 
and the techniques used to establish the nature of the instability. .$4 records the 
results obtained using the feedback in various azimuthal mode numbers and various 
configurations of suppressor plates. Further, this section presents the effect of 
suppression on the zero-order density and temperature profiles. 4 5 compares the 
experimental results with the phenomenological theory developed in 4 2, and con- 
tinues by obtaining some quantitative measure of the change in the cross-field 
diffusion constant of the plasma. Finally, 4 6 briefly discusses the future possibilities 
of the feedback technique. 

2. Theory 
Recently there have been a number of papers on the theory of the feedback tech- 

nique and its application to the suppression of ‘drift-type’ instabilities in plasmas. 
Some of these are Arsenin and Chuyanov (1968), Simonen et al. (1969)) Chen and 
Furth f1969), Furth and Rutherford (1969) and Taylor (1969). 

Arsenin and Chuyanov (1968) considered the case in which a system of detectors 
and amplifiers could be used to excite, at a peripheral surface, a wave with a potential 
proportional to that of a collisionless drift instability present in the plasma. They 
suggested that by a suitable choice of phase and gain, that the phase velocity of the 
wave in the system formed by the plasma and electronic circuit could be higher 
than the Larmor drift velocity of the electrons. Then, by an exchange of energy 
between the wave and the resonant electrons, they predicted that this would lead to 
damping of the instability perturbations. This theory amounts to considering the 
change in the boundary conditions at the plasma surface when the feedback signal 
is present, and, therefore, it will be effective only on large-scale perturbations of the 
surface wave type. Small scale oscillations localized in the plasma will be unaffected 
by this technique, as they are insensitive to changes in the boundary conditions and 
will not be stabilized. Under the experimental conditions described here, this theory 
predicts unattainably large gain factors for suppression by a plate at the plasma 
boundary. In  any case, the plates mere situated not outside, but inserted into the 
plasma. 

Simonen et al. (1969) have considered the effect of feedback on the collisional-type 
drift waye occurring in their ‘Q’ machine plasma. They approached the problem by 
considering the linearized two-fluid equations, in the ‘slab’ model approximation, 
and included a feedback source term S = Inlii, exp(iO), proportional to the gain, 
phase change 6’ and the density perturbations iil in the plasma. They obtaified a 
dispersion relation which predicted how the growth rate and frequency should behave 
in the presence of the feedback. Further, for an electron sink Iuel, they obtained 
stability criteria in the limiting cases as follows: 

for the case w* % 1 / q  (long-wavelength limit). 
n 
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for the case U* < l/’rll (short-wavelength limit). Here T,/ is the time for electrons to 
diffuse the parallel distance l /k , ,  (kll is the parallel wavenumber), T~ is the time for 
ions to diffuse the transverse distance 1 / k ,  (k, is the perpendicular wavenumber), w* 
is the drift frequency, and b = k,2r,2/2, where r L  is the ion Larmor radius. 

From equations (1) and (2) it can be seen that the optimum feedback phase for 
stabilization is 180” and 270” in the long- and short-wavelength limits, and there is an 
optimum gain (proportional to /gel) for stabilization in each case. These authors have 
obtained fairly good agreement between these predictions and their experimental 
results. Similar criteria have been found independently by Furth and Rutherford 
(1969) and also by Chen and Furth (1969). 

Taylor (1969) has approached the problem by considering the generalized case for 
any instability. He considers a detector which senses the potential $ at position x and 
in response to this signal charges up a suppressor element located at x’. h generalized 
response function of the feedback circuit is taken to be g exp(i8)G(x, x’), where g is 
the gain, 8 the phase angle, and G(x, x‘) is real. The response of the plasma to an 
oscillating potential $(x) exp iwt is represented by a generalized conductivity tensor, 
K,(x’, 2) and if only potential oscillations are considered a dispersion equation is 
obtained : 

where 

is the dielectric constant of the plasma. This dispersion equation determines the 
stability of the system through the eigenvalue w .  

When the suppressor is active, the oscillation frequencies are given by 

v . dY’r,(Y, T’)V+(Y’)  +g exp i8 [ dr‘G(r, Y’) $(Y’) = 0. (5) 

Using pertuibation theory (where g is small), the effect of the feedback suppressor 
on the real and imaginary parts of the eigenvalue w = wo+iyo is found. Here w o  is 
the original instability frequency, and y o  is the corresponding growth rate. He finds 
that the new frequency w and growth rate y are given by 

w = W O  +gk COS 8 (6) 
y = yo +gk sin 8 

where r cb*w ”, ’ ’ 

k =  

j”4*($) ab 
Thus stabilization requires 

gks in8  > yo 

(7 )  

and so the effect of feedback may be to suppress or enhance instabilities according to 
the phase difference 8. 

However, the above theories are all linearized theories, and do not allow for the 
positive feedback case when the instability is enhanced rather than suppressed. In  
order to explain this case a nonlinear theory must be used which limits the final 
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signal level of the instability to a finite value. In  the last few years there has been 
considerable interest in the nonlinear mechanisms which determine the saturation 
level of plasma instabilities. In  fact, it has been shown that the Van der Pol (1922) 
type of nonlinear theory gives a good description of various kinds of nonlinear 
phenomena occurring in some plasma instabilities. These phenomena include mode 
locking and mode competition (Lashinsky 1965 a, 1965 b), periodic pulling (Abrams 
et al. 1969), frequency entrainment or ‘synchronization’ (Keen and Fletcher 1969) 
and ‘asynchronous quenching’ effects (Keen and Fletcher 1970). Further, it has been 
shown theoretically by Stix (1969), when considering finite-amplitude collisional drift 
wave oscillations, that a solution may be obtained ‘which saturates in a manner similar 
to the Van der Pol solutions’. Consequently, as it has been shown that this type of 
differential equation gives a good description of finite amplitude collisional drift 
waves, the phenomenological approach has been adopted here in which the Van der 
Pol equation is taken to describe the density oscillations in the plasma. The  equation 
in its simplest form without feedback is: 

d2nl dn, - - ( E  - 3/?n12) - + wo2nl = 0 
dt2 dt 

where n, is the density perturbation, w,, the drift wave frequency, 3: is the linear 
growth rate (a,”, < l), and p is a nonlinear saturation coefficient which limits the 
final amplitude. This final amplitude a, without feedback is given by 

a, = (4x/3/?)1’2. (11) 
Now, consider a signal proportional to the density perturbations n, fed back into the 
system but altered in amplitude by an absolute gaing, and delayed in time by T .  Then 
this signal is represented by gnl(T), where the notation nl(T) is equivalent to n,(t - T ) .  

The quantity n, should be written TLl(t) emphasizing that it is a function of time, 
whereas the term nl(T) = n,(t - T )  is a retarded one and relates to past time ( t  - T ) ,  

T being a time lag. (In fact w , , ~  = #I the phase lag.) Then, with the feedback term 
included, the equation (10) becomes 

d2nl dnl 
__ - (K- 3/3n12) - + wo2nl +gwo2n,(7) = 0. 
dt2 dt 

This equation is a simple example of a difference-differential equation (Minorsky 
1962), and can be rearranged in the form 

d2n, dn, - + w2nl = ( w 2  - wo*)nl + ( x  - 3/?n12) - -guo2n1(T) = 2 H 
dt2 dt 

If a solution of the form n, = a sin wt is assumed, it can be shown that equation (4) 
can be brought into the form 

d2nl 
- + w2n1 = F{a(t), w }  cos wt +f(a(t), w }  sin w t +  harmonics. (14) dt2 

If the calculation is limited to the fundamental frequency w the solution in the first 
approximation is 

a(t) = - (15) 
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For the transient condition the first part of equation (15) gives 

da 1 
- = --(a, w )  
dt 2w 

and for the stationary state one has 

F(u,  w )  = 0, f(a, w )  = 0. (17) 

Therefore, if one calculates the coefficients of cos wt and sin w t  from the expression 
XH, in equation (13), the following conditions are obtained for the stationary state: 

w2 = wo2(1 +g cos 4). (19) 

Equation (18) shows that as the gain g is increased from g = 0 the amplitude a will 
increase or decrease according to the sign of sin 4. Optimum suppression is achieved 
with 

s in+ = -1 (i.e. 4 = -30" or 2'70") (20) 

and, suppression occurs wheng = cc/wo (since w = w o  at + = -90'). 
The predictions of this phenomenological theory are compared with the experi- 

mental facts in fj 5. It is seen that the predictions for the frequency shift (Aw)  and 
the change in amplitude squared A(ao2 - n2) (proportional to A( x o  - a) or A(yo  - 7)) 
in terms of the gaing and phase shift r,i5 or 0 are very similar to those in Taylor's (1969) 
generalized theory. 

3. Experimental details 
3.1. Hollow cathode arc apparatus 

The  plasma employed was a hollow cathode arc discharge (Woo and Rose 1967) 
running in argon. The  cross section of the apparatus is shown in figure 1. This can 
be divided into three main sections: (i) a production region, (ii) a baffle region, and 
(iii) a 14 metre experimental region. The plasma was produced at a hollow tantalum 
cathode (0.3 cm inside diameter), through the centre of which the neutral argon gas 
entered (flow rate N 1.0 atm cm3 s-l). Two copper baffles 4 cm in diameter, 10 cm 
long and 15 cm apart formed the intermediate baffle region. These baffles or limiters 
restricted the plasma column to about 4-5 cm diameter inside the 10 cm diameter 
glass tube of the drift (experimental) region. The  plasma was terminated at a copper 
plate anode ( -  4 cm diameter) which also served as an auxiliary gas feed (Aow rate - 0.3 atm cm3 s-'). Each region was differentially pumped by one 15 cm diameter 
diffusion pump (speed 1400 litresls each). The axial magnetic field in the experimental 
region was separately variable from that in the production and baffle region and was 
uniform to better than 0.5% throughout each region, when applied separately. The  
current through the arc was kept constant a t  20 A throughout these experiments. 

It has been shown (Woo and Rose 1967) that a relatively quiescent plasma can be 
obtained if the arc running conditions are arranged such that R 1 ~ l  1 in the cathode 
region, Q 1 ~ l  < 1 in the baffle region and Rir l  1 in the experimental region. (Here 
R, = eB/.V,c is the ion cyclotron frequency, and T~ is the mean ion collision fre- 
quency.) These inequalities may be satisfied by varying the axial magnetic field or 
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alternatively, by varying the gas flow rates or pumping speeds to the various regions. 
Then the experimental region is well isolated from the production region where 
conditions are ideal for the formation of many instabilities. 

D r i f t  r e g i o n -  r ---Baffle ++-Cathode-+ I r eg ion  1 reg ion  I 

Figure 1. A cross section of the hollow-cathode arc apparatus. 

However, in this experiment the flow rates were kept constant at the values men- 
tioned above, and the magnetic field in the production and baffle region was kept 
constant at 0.5 kG and in the experimental region was varied between 0.5 and 1.0 kG. 
Under these conditions x = RiTi < 1 in the experimental region and, consequently 
an instability was present. 

3.2. Diagnostic methods 
Between each magnetic field coil were spaced a set of ports (totalling 6 sets shown 

marked as (a ) - ( f )  on figure 1) along the tube in the experimental region. Each set 
comprised four ports arranged symmetrically around the tube at 90" intervals, except 
for one set which was rotated 60" (at 60°, 150", 240" and 330')). Interchangeable 
probes could then be inserted at any of these positions. The  single probes could be 
used in their floating or ion-based configurations and could be moved radially across 
the plasma. 

Another single probe could be moved axially along 1 m of the column, and also, 
could be rotated to any radial position. This is marked in figure 1. Density and 
temperature profiles were obtained using a radially moveable double probe (Johnson 
and Malter 1950). The probe was constructed from two tungsten wires 0.05 cm in 
diameter and separated 0.10 cm apart which protruded 0.10 cm from a boron nitride 
holder 0.30 cm in diameter. The probe moved on a micrometer carriage to the centre 
of the column. The  ion temperature Ti was estimated from the broadening of emitted 
spectral lines, but owing to experimental error it was only possible to obtain an upper 
limit of Ti < 0.5 eV. 

In  order to identify the instability unambiguously, it was also necessary to know 
the radial electric field E ,  and the zero-order rotation frequency wr of the column. 
These measurements were discussed by illdridge and Keen (1970), and the methods 
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, 
U t 

G l a s s  c o n t a i n m e n t  t u b e  

were explained in more detail at that time. Briefly, the radial electric field E ,  was 
obtained by three different methods, and was deduced from: 

(i) the corrected spatial variation of the floating potential +f. 

(ii) the spatial variation of plasma potential c $ ~  as measured using a thermionically 
emitting probe (Kemp and Sellen 1966). 

(iii) the spatial variation of the plasma potential ol, as deduced from the 'knee' 
in the In i, against V ,  plot of a single probe curve. (Here V ,  is the applied potential 
to the probe, and i, is the resulting electron current drawn by the probe.) 

The rotation of the arc column as a function of radius was determined from 
measurements on a single-sided ion saturated probe (Brundin 1964). A single probe 
shielded on one side by boron nitride was biased to ion saturation current. The  probe 
was faced away from the rotation, the ion-saturation current is measured, and then 
faced into the flow and the difference Ai in the saturation current measured. The  
difference was related to the rotational velocity z,, through the relationships 
c0 = (Ai/is)(Te/-WJ1'z. Hence, in this way the rotational frequency w r  = vo/r uas 
obtained as a function of radius Y. 

3.3. Feedback system 
The electronic apparatus of the feedback system is shown schematically in 

figure 2. A signal from an ion-biased probe 1 (see also figure 2(b)) proportional to 

P l a s m a  
L - h P o r t s  ( f )  c o l u m n  

S p e c t r u m  
a n a l y s e r  

P h a s e  
s h i f t e r s  f 

P o r t s  (eL,rh Y o b e ( l )  F e e d b a c k  p l a t e s  

IJ 
1- A- 

/ /'/ 

the density perturbations in the plasma was coupled to a wideband amplifier with a 
gain capability of -20 dB to 40 dB and a bandwidth of 1.5 Hz to 400 kHz. From 
the amplifier the signal was passed through a unity gain phase shifter 1 which was 
capable of shifting the phase up to 450". The  system was then coupled through similar 
phase shifters 2, 3 and 4 and power amplifiers 1, 2, 3 and 4 to four plates spaced 
symmetrically around the plasma at 90" intervals. The power amplifiers were capable 
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of delivering up to 25 W each within a bandwidth 0-250 kHz. The system of phase 
shifters and the four plates make it possible to feedback particular azimuthal mode 
numbers m = 0, 1, - 1, k 2, etc., into the plasma, or, alternatively, one, two, three or 
four separate plate systems could be used. The axially moving probe was used to 
detect the effect of feedback on the instability, since this could be moved radially 
and axially in the plasma to observe that the effect was consistent throughout the 
whole volume. The  output of this probe was displayed on a spectrum analyser from 
which measurements of relative amplitude and frequencies could be obtained. 

The plates were normally rectangular in shape, 1.2 cm long (parallel to the axial 
direction) and 5 mm wide (in the azimuthal direction). They could be moved 
radially, and were normally kept at ports (f) (figures 1 and 2(b)). The relative positions 
of the input probe 1 (at port (e)), the plates (port (f)), and the axially moveable probe 
are shown in figure 2(b). 

Finally, by interposing a tone-burst generator between phase shifter 1 and the 
power amplifiers, it was possible to obtain information about the growth-time of the 
instability. The  tone-burst generators acted as a periodic fast gate on the feedback 
signal, and so the instability in the plasma was suppressed and then allowed to 
return, as the signal was ‘on’ and then ‘cut off’. The  instability signal was monitored 
on an oscilloscope and photographed so that the decay and rise time could be obtained 
from the trace. 

4. Results 
4.1. Instability measzirements 

For slight variations of the external conditions (e.g. arc potential at the constant 
current of 20 il, magnetic field, etc.) the fundamental frequency of the instability 
was found to lie in the range 5.3-8.0 kHz. The instability at the lower frequency had 
a much narrower halfwidth ( N 0.4 kHz), whereas, nearer 8.0 kHz, the halfwidth mas 
approximately 1 kHz. Figures 3(a) and 3(b) show the amplitude and phase of the 
instability as a function of radius taken at 5.5 kHz frequency ( B o  = 0.5 kG). The  
potential oscillations of the instability were observed from a floating probe, and it 
is seen that a 7i change of phase occurs at the centre of the column where the amplitude 
is a minimum. The  phase appears to change slightly as the probe is moved further 
out, but probably this is related to the rotation of the plasma. Density perturbations 
ii, were checked as a function of radius and the oscillations were found to be approxi- 
mately electrostatic (i.e. iil/lzo N eBl /kT ,  E 154,). Four probes placed on equal 
radii around the plasma showed that the fundamental frequency w o  of the instability 
had an m = 1 azimuthal mode number. Also present was some component at 2 w 0  
with m = 2 with an amplitude of approximately 25 O of the fundamental, and some 
at 3 w 0  (m = 3 )  with less than loo,,  of the fundamental amplitude. From axial 
amplitude and phase measurements the fundamental was found to have a wavelength 
A, Iliuch greater than 200 cm. 

The  density profile of the plasma taken under these same conditions is shown in 
figure 4(a). Over a certain range of radii (0.6-2.5 cm) the density changes exponen- 
tially with radius with a constant inverse scale length 

1 an, 

n0 
IC = - (-j-) = 0.65 i. 0.05 cm-l .  

The  corresponding temperature profile is shown in figure 4(b) .  The rotation fre- 
quency w,, measured with the one-sided probe, was approximately constant at 
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wp = 3-5 & 0.6 kHz in the range of radius from 0.5 to 2.1 cm. The  average value of 
the radial electric field E ,  was found to be - 1.0 t- 0-4 V cm-l. 

In  view of these results the instability was identified as a rotationally convected 
collisional drift instability (Aldridge and Keen 1970). Summarizing, the instability 
was predominantly an nz = +1 azimuthal mode, with a frequency w in the range 

5.5-8.0 kHz (i.e. w < 0,) depending upon the magnetic field Bo between 0.5 and 
1.0 kG. This compares with a theoretically predicted value of 5.0 to 7.0 kHz for the 
same magnetic field range. The  axial wavenumber was found to be R ,  4 0.03 cm-l, 
in comparison with a theoretically predicted maximum growth rate for k, --f 0. 
Also, experimentally it was found that Q = . R i ~ i  5 1 which is a necessary condition 
for the instability to appear. Therefore, it was inferred that this predicted ‘drift- 
type’ oscillation was the one present in the plasma. 
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Figure 4. Shows ( a )  the density and (b)  the temperature plotted against radial 
position Y .  

4.2. Feedback results 
4.2.1. Single plate system. Initial experiments on the feedback system were performed 
using just one plate as the suppressor element. The power amplifiers 2, 3 and 4 
were disconnected from their corresponding plates. The  sensing probe (1) was 
arranged so that it was in the same axial plane and the same relative azimuthal 
position as the suppressor plate, in order that there was no relative azimuthal phase 
difference between the probe and plate. Therefore, the only phase change would be 
that in the electronic system. Initially, the gain in the system was set at an arbitrary 
value and the phase angle 4 was varied until an optimum decrease in amplitude was 
found. Once this phase angle was set, the gain value G on the wideband amplifier 
was changed until suppression was achieved. The  effect of the feedback is shown in 
figure 5. Figure 5(a) shows a spectrum analysis near w o  without feedback to the 
plasma; figure 5(b) illustrates the effect for optimum suppression of the instability; 
and figure 5(c) shows the enhancement achieved when inserting a phase shift of 180" 
in the feedback loop after conditions had been set for optimum suppression. Under, 
these conditions the gain factor G for optimum suppression was measured as a 
function of radius r ,  at which the plate suppressor was set. This is shown plotted in 
figure 3(c). I t  is seen that the minimum gain (G 2: 17) is required at about 
T = 1.0 ~ 0 . 1  cm, which corresponds closely to the maximum in the instability 
amplitude. This condition was found, by Simonen et al. (1969). Near the outside 



130 B. E.  Keen and R. V .  Aldridge 

Figure 5. Spectrum analyser output showing the instability at 5.5  kHz for 
(a) no feedback, (b) optimum feedback for suppression, and (c) as for (b) but 

with the phase angle changed by 180" to cause enhancement. 

of the column (Y 2 2.5 cm) gain factors in excess of 500 would not suppress the 
instability. Throughout the remaining experiments the plates were kept in the range 
of radii 1-6-2.2 cm in order that they did not interfere with the plasma conditions, 
such as the density profile, radial electric field, electron temperature, etc. 

A study of the effect of gain and phase shift in the feedback loop on the instability 
amplitude n was made. Figure 6 shows the reduced amplitude a!ao plotted against 

Figure 6. Reduced amplitude alao against amplifier gain for the 
radii r = 1-6 kO.1 cm and T = 2.0 kO.1 cm with phase angle C$ set for optimum 

suppression. 
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the gain C: in the wideband amplifier, for the plate set at two different 
radii Y = 1 * 6 + 0 * 1  cm and Y = 230t0.1 cm. These curves were taken with the 
phase angle set for optimum suppression. It is seen that, at this phase setting, below 
a certain gain the feedback has a stabilizing effect, while above it the system becomes 
progressively more unstable. It was checked that the instability level was consistent 
throughout the plasma, at the gain setting for minimum amplitude, by moving the 
axial probe both radially and longitudinally along the column. 

The effect of varying the phase angle 6 is shown in figure 7 for the cases (a) 
G = 25.2 and (b )  G = 12.6. These were taken when the plate was set at a radius 
Y = 1 . 8 t 0 . 1  cm. The gain value G = 25.2 corresponds to the optimum value for 
suppression at this value of radius. I t  is seen that there is a minimum value at a 
phase angle of 27O0, while there is a maximum and a corresponding enhancement at 
4 = 90". 

At this stage, an experiment was tried in which the suppressor plate was increased 
in size to a circular plate of 2.0 cm diameter. This proved to be Iess successful in 
suppressing the instability and was probably due to imposing a definite phase angle 4 
on the whole area of the plate (which subtended an azimuthal angle of 50" to the centre 
of the column). However, the required phase angle for suppression is not constant 
over this azimuthal extent of the plasma instability, and thus only partial suppression 
occurred. Consequently, experiments were continued with the original plates which 
appeared to operate effectively. 
4.2.2. Multi-plate system. Experiments were continued with the set-up as shown in 
figure 2(a), that is using the four phase shifters, power amplifiers and plates. By 
correctly setting the phase on the phase shifters 2, 3 and 4, definite azimuthal modes, 

I B G=12.6 

P 

B G=12.6 

0.03 
0 6 0  120 180  240 300 360 4 2 0  

Phase angle (deg) 

Figure 7. Reduced amplitude alao against phase angle (b for A, G = 25.2 and 
B, G = 12.6. 

numbers 0, - 1, 1, k 2, could be selected and fed back with a total phase shift deter- 
mined by phase shifter 1. The  results of using this technique are shown in figure 8. 
Figure 8(a) shows the spectrum analysis of the instability without feedback, and this 
indicates the relative amplitude occurring at the second and third harmonics compared 
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with the fundamental at 5.5 kHz. Figure 8(h)  shows the effects of feedback when an 
nt = 0 mode is applied and it is seen that very little difference is found. For the 
nt = 1 mode, figure 8(c) shows that the fundamental at 5.5 kMz is almost completely 
suppressed under optimum conditions, whereas the second harmonic (1 1 kHz, 
nz = 2) is slightly enhanced in amplitude. Figure 8(d) shows that for an m = 2 feed- 
back signal, the oscillations at S.5 kHz are completely unaffected, whereas the 11 kHz 
signal is reduced in amplitude. Finally, figure 8(e)  shows the feedback applied to 
only one plate, and here suppression effects are observed for all frequencies and modes, 
presumably because one plate can feedback a mixture of modes simultaneously. 

Figure 8. Spectrum analysis of the instability showing fundamental (5.5 kHz), 
second harmonic (1 1 -0 kHz) and third harmonic (16-5 kHz) for the cases (U)  with 
no feedback, (b) feedback in m = 0 mode, (c) feedback in m = +1 mode, 
(d) feedback m = 121 mode, and (e) feedback in a mixture of modes on one plate. 
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When the instability occurred at the higher frequency (- 7.0 kHz) the spectrum 
analysis showed the signal to be rather broad with a halfwidth greater than 1.0 kHz. 
When it was tried to suppress this instability using one plate, complete suppression 
was not achieved. Consequently, two independent feedback systems were employed. 
These consisted of two separate pick-up probes (ion-based), two wideband amplifiers, 
two phase shifters feeding two separate plates, via two power amplifiers. By succes- 
sively changing the gain and phase of each system it was possible to suppress the 
broader instability. The  effects obtained on the density and temperature profiles under 
these conditions will be mentioned in § 4. 

Finally, as mentioned in 5 3, the growth rate of the instability was measured by 
periodically gating the feedback signal with a tone-burst generator. Figure 9(a )  shows 
a typical photograph of the burst of instability signal when the feedback signal is 

Figure 9. (a)  Shows the burst of the instability obtained when the feedback 
signal is gated off for 32 cycles, and (b)  shows expanded scale of the decay of the 

instability. 

gated-off for a period and it is seen that there is a certain rise time and decay time 
associated with the leading and trailing edges of the burst of signal. Figure 9(b) 
shows the trailing edge on an expanded scale. These photographs were analysed and 
average values for a growth rate from the rising signal zr and from the decaying signal 
ad were obtained, as shown in figure 10. These results were obtained with the 
instability at 5.5 kHz. The  parameter r. is obtained by considering the transient solu- 
tion of the undisturbed \'an der Pol equation (equation (10)). 

In  this case the return to equilibrium is given by 

a ( t )  = a , [ l  + ((ao/a,)2 - l}exp( - x t ) ] - l  2 (21) 

where a( t )  is the instantaneous value of the amplitude at time t and a, is the initial 
value at time t = 0. It is seen that the initial growth rate at T = 0, depends upon' the 
initial amplitude value a at t = 0. Therefore in order to obtain a value for Q it was 
necessary to fit the curve given by equation (21) to the data. 

4.2.3. Results on the dc properties of the plasma. Once the conditions for suppression 
of the instability had been established, and their characteristics had been studied, 
the effect on the density and temperature profiles with and without the instability 

6A 
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Figure 10. The logarithm of the reduced amplitude a/ao plotted against the 
number of periods of the signal for (a) the rise time, and (b)  the decay time of 

the instability. 

present were investigated. This was carried out using the radially moveable probe 
with the instability present and then with it ‘switched off’, at each radial position in 
the plasma. The  results are shown in figures ll(a) and l l ( b )  for a single plate, single 
feedback loop system acting on the instability at 5 . 5  kHz. It was seen that the main 
effects of removing the instability were that the density profile was ‘sharpened up’, 
and that an inhomogeneity in the temperature profile was smoothed out. The  radid 
position of this inhomogeneity corresponded with the maximum in the instability 
amplitude. When the instability was stabilized, it is seen that the density was higher 
at the centre and fell off faster at the periphery of the column, in comparison with 
when the oscillation was present. This is a consequence of the fact that the arc current 
was stabilized and thus the current I = e 2nn(r) Vll(r) r dr  remained constant. Here 
e is the electronic charge, n(r) is the density and V,,(Y) the parallel electron velocity 
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at a particular radius Y of the column. If V,,(r) falls in a monotonic manner, any 
decrease in the cross-field diffusion constant DL would manifest itself by increasing 
the density at the centre and decreasing it at the outside of the column. This is 
observed experimentally when the instability is suppressed, and so it is inferred that 
suppression reduces the cross-field diffusion rate of the plasma. 

'I 

I 

' * O S  0 -25 2.0 1.5 1.0 0 . 5  0 0.5 i.0 1.5 2.0 2 

R a d i u s  (cm) 
3 

Figure 11. The effect of the removal of the instability at 5 . 5  kHz on (a) the 
density profile, and (b) the temperature profile. 

The  effect of one or more systems on the density profile of the plasma, when the 
broad instability at approximately 7 kHz is suppressed, is shown in figure 12. The  
reduced density profile n(r)/n,(O) with the instability present is shown in figure 12(a). 
Here ~ ~ ( 0 )  represents the density at the centre (Y = 0) when the instability is present, 
and n(r) is the density at any radial position Y .  The effect of one system is shown in 
figure 12(b), and it is seen that the central density rises by about 9% which is less 
than the central density enhancement ( N 16%) achieved on the narrower instability 
at 5.5 kHz using one plate suppressor. Two independent systems were then employed 
and the effect is shown in figure 12(c) ; here the central density is enhanced by approxi- 
mately 18%. Therefore under certain conditions it appears that multi-plate, multi- 
independent systems might give an improvement over one system. The  equipment 
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Figure 12. Shows the reduced density profiles n(r)/nl(0) obtained when ( a )  the 
instability at approximately 7 kHz is present, (b) when it is suppressed using one 
plate and one feedback loop, and (c) when it is suppressed using two plates and 
two feedback loops. Here nI(0) is the density at the centre with the instability 

present. 

for more than two systems was not available and so could not be attempted, although 
this could be an interesting expcriment. 

5. Interpretation of results 
5.1. Feedback system 

A comparison is made here between the results obtained on the single plate, single 
feedback loop system and the theoretical predictions made by the phenomenological 
theory developed in $2. In  that section, equation (18) predicted that the square 
of the signal level a' should fall linearly as a function of the absolute gaing (or relative 
gain G) in the feedback loop, when the phase is kept at a constant value. The  results 
shown on figure 6 have been replotted in figure 13 as the square of the reduced ampli- 
tude ( U / U ~ ) ~  against increasing amplifier gain G. This is shown for the suppressor 
plate set at the two different radii, Y = 1 - 6 i O . 1  cm and Y = 2 * 0 i 0 * 1  cm. I t  is 
seen that a good linear relationship is obtained experimentally. 

In  figure 7 ,  a minimum is obtained in reduced amplitude a/aO at a phase angle 
of approximately 270" and corresponding maximum occurs at approximately 90". 
This is as predicted by the theory (equations (18) and (21)). Further equation (18) 
predicts that as the phase angle 4 is varied at constant gain g (or G), the square of 
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Figure 1 3 .  The square of the reduced amplitude ( U , / U ~ ) ~  plotted against amplifier 
gain G for the conditions when the suppressor plate is set at a radius Y such that 

A, Y = 2.0 k0.1 cm and B, Y = 1.6  kO.1 cm. 

the amplitude a2 should vary proportional to sin +. Figure 14 shows the square of 
the reduced amplitude (a/ao)2 plotted against (a), the phase angle 4 and (b ) ,  sin +, 
I t  is seen that the variation is as predicted (within experimental error) for the three 
gain values G = 25.2, 12.6 and 7.9. 

A calibration for the absolute gain g in terms of the relative gain G of the system 
was achieved with the aid of equations (19) and (20). Since, for optimum suppression 
(G = 25.2) equation (20) gives g = ./w0(< l), and then equation (19) gives 
2 h w / w o  = g cos 4 (where h w  = w -  wo).  The frequency shift ho was measured 
as a function of cos 4, and this is shown plotted in figure 15. A reasonable linear 
relationship is obtained as predicted, and the slope of the line is proportional to 
g = z / w 0  (=  0-12+0.02). This allows the absolute gain to be calibrated in terms 
of the amplifier gain G(g = yG) and so the constant ( y  = 4.5 x lom2) is obtained. 
A s  a consequence, the theoretical expression of (a/ao)2 as a function of phase angle + 
for each gain value, was calculated absolutely using equation (18). These resulting 
variations are shown as th t  continuous lines in figure 14. 

This value of 0: = (0.12 5 0-02)wo can be compared with the directly measured 
linear growth rate values obtained from the rise times and decay times of the in- 
stability, as mentioned in $4. These values were CI, = (0-12+0-02)w0 and 
ild = (0.15 5 0 . 0 3 ) ~ ~ .  It is seen that the values obtained by the direct and indirect 
methods show good agreement. 

It is seen that by adopting the phenomenological approach to this problem, in 
which a nonlinear equation of the Van der Pol type is used to explain the amplitude 
saturation conditions of this instability, relationships can be obtained between the 
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amplitude a and frequency shift A u  as a function of gain g and phase shift 4 in the 
feedback loop. Comparison with measurements show the predicted variations and a 
consistent value for the growth rate x is obtained within the experimental error. 

90 0 9 0  180 270 
Phase angle (deg)  

-1.0 -0.8 -0 .6  -0.4 -0.2 0 0.2 04 0 .6  0 .8  1.0 
s i n  6 

Figure 14. A plot of the (reduced amplitude)z(a/ao)z against (a) phase angle c$, 
and (b) sin 4, 

5.2. Effect on dc properties of plasma 
In  § 4 it was mentioned that, from the change in the density profiles with the 

instability present and with it suppressed, it was inferred that the cross-field diffusion 
of plasma had been reduced, but no quantitative measure of this change was ascribed. 
However, Simon (1955, 1959) has considered the problem of cross-field diffusion in 
an arc column and has calculated an expression for the density profile % ( Y )  in terms of 
the cross-field diffusion coefficient D. This is given as 
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where KO is the Bessel function, A is a constant and y o  the ‘e’ folding distance 
in the plasma. When Y 9 y o  this equation (21) reduces to 

and 
n ( y )  21 ( r ) - l l2  exp( --y/r0) 

where L is the length of the plasma column and z‘, the longitudinal ion velocity. 

Figure 15.  The change in the instability frequency hw(kHz) plotted against 
the cosine of the phase angle (cos 4). 

0 0.5 1.0 1.5 2.0 2.5 3.0 
Radius (cm) 

Figure 16. The logarithm of (density) x plotted against radius for 
(a) instability present, and (b) stabilized. 
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Consequently, if In w 1 I 2  is plotted against Y, the slope of this curve will give a meas- 
ure of yo .  This is shown plotted in figure 16 for the instability at 5.5 kHz, under the 
conditions ( a )  the instability present, and ( b )  the system stabilized. This results in 
values ro(unst)/ro(stab) = 1.52. Then, assuming the longitudinal ion velocity z‘, is 
unchanged under the two conditions, a value for the diffusion constant ratio is 
D,(unstab)/D,(stab) = 2.3. I n  the same way an analysis of the profiles for the 
instability at 7 lrHz when it is suppressed by one- or two-plate systems results in a 
ratio of D,(unst) : D,(stab(l)) : Di(stab(2)) = 2.6 : 1.7 : 1. In  this way it is possible 
to ascribe some quantitative relative measurement to the effect. 

6. Discussions and conclusions 
I t  has been established that a feedback technique with a suitable gain and phase 

shift value in the feedback loop can be used to suppress a drift instability in a plasma. 
If the gain is increased above the optimum valueg, the instability in the system begins 
to reappear and for large gain values (g 9 go) the level is larger than its unperturbed 
amplitude, This is when the loop consisting of the total system (plasma, phase shifter, 
amplifier, and return to plasma) is caused to oscillate, and then the final amplitude is 
determined by nonlinear elements in this total system. However, as the gain value is 
increased from zero to its value go,  both the linear generalized theory of Taylor (1969) 
and the phenomenological nonlinear theory developed in this paper give a good 
description of the experimental data obtained, but give no prediction for gain values 
greater than go. The nonlinear theory assumes that the final limited amplitude can 
be determined from an equation of the Van der Pol type, and is applicable as long as 
the growth rate 0: is much smaller than the instability frequency U,,. This is satisfied 
in this case, since O:/wo 2i 0.1. This good agreement between experiment and theory 
is achieved in the case when one suppressor plate is used. 

Empirically, it has been found that even in separate azimuthal mode numbers 
are fed back in the plasma, using up to four separate plates spaced azimuthally in one 
radial plane around the plasma, best stabilization is achieved with only one suppressor 
plate. This is when a mixture of modes is fed back into the plasma with the same 
proportion of frequencies and mode numbers as that present in the instability. Also, 
it was found experimentally that improved suppression was achieved when two 
separate feedback systems of pick-up detector, amplifier, phase-shifter and suppressor 
plate were utilized. Further separate systems were not available to see if increased 
numbers improved efficiency. From the density profiles measured with and without 
the feedback system operating, a change in the cross-field diffusion constant D, was 
inferred. In  this particular case, using the theory of Simon (1955, 1959), the diffusion 
constant DL was found to decrease by a factor of 2-3 when the instability was sup- 
pressed. 

Therefore, in general, it would appear that this method could be extremely useful 
to suppress ‘drift-type’ instabilities in any future thermonuclear containment device. 
For this application some other method of detection and ‘injection’ technique, which 
did not employ probes and plates inside the ‘hot’ plasma, would be necessary for 
efficient operation. Among the suggested methods of ‘injection’ are electric field 
modulation at the boundary (Arsenin and Chuyanov 1968), neutral particle injection 
(Chen and Furth 1969), and external magnetic field modulation. Detection of the 
instability could be achieved by electric field pick up outside the plasma, or emitted 
radiation detection. Therefore, it would be interesting to perform this type of 
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experiment on a high density, ‘hot’ plasma, in which external detectors and ‘suppres- 
sors’ were used to suppress internal ‘drift-type’ instabilities. 
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